Search results for " differential equations"
showing 10 items of 146 documents
On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations
2016
In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.
How diffusivity, thermocline and incident light intensity modulate the dynamics of Deep Chlorophyll Maximum in Tyrrhenian Sea
2015
During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time- dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environm…
Nonlinear Analysis of Phase-locked Loop-Based Circuits
2013
Main problems of simulation and mathematical modeling of high-frequency signals for analog Costas loop and for analog phase-locked loop (PLL) are considered. Two approachers which allow to solve these problems are considered. In the first approach, nonlinear models of classical PLL and classical Costas loop are considered. In the second approach, engineering solutions for this problems are described. Nonlinear differential equations are derived for both approaches.
Fractional differential equations solved by using Mellin transform
2014
In this paper, the solution of the multi-order differential equations, by using Mellin Transform, is proposed. It is shown that the problem related to the shift of the real part of the argument of the transformed function, arising when the Mellin integral operates on the fractional derivatives, may be overcame. Then, the solution may be found for any fractional differential equation involving multi-order fractional derivatives (or integrals). The solution is found in the Mellin domain, by solving a linear set of algebraic equations, whose inverse transform gives the solution of the fractional differential equation at hands.
Non-standard Problems in an Ordinary Differential Equations Course
2018
International audience; We report first results from a teaching intervention in an ordinary differential equations (ODEs) course for engineering students. Our aim is to challenge traditional approaches to teaching of Existence and Uniqueness Theorems (EUTs) through the design of problems that students cannot solve by applying well-rehearsed techniques or familiar methods. We analyse how the use of nonstandard problems contributes to the development of students' conceptual understanding of EUTs and ODEs.
Oscillatory Behavior of Second-Order Nonlinear Neutral Differential Equations
2014
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/143614 Open Access We study oscillatory behavior of solutions to a class of second-order nonlinear neutral differential equations under the assumptions that allow applications to differential equations with delayed and advanced arguments. New theorems do not need several restrictive assumptions required in related results reported in the literature. Several examples are provided to show that the results obtained are sharp even for second-order ordinary differential equations and improve related contributions to the subject.
Indefinite integrals from Wronskians and related linear second-order differential equations
2021
Many indefinite integrals are derived for Bessel functions and associated Legendre functions from particular transformations of their differential equations which are closely linked to Wronskians. A large portion of the results for Bessel functions is known, but all the results for associated Legendre functions appear to be new. The method can be applied to many other special functions. All results have been checked by differentiation using Mathematica.
On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems
2018
This work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker-Planck problem appearing in computational neuroscience. We obtain computable error bounds of the functional type for the static and time-dependent case and for different boundary conditions (mixed and pure Neumann boundary conditions). Finally, we present a set of various numerical examples including discussions on mesh adaptivity and space-time discretisation. The numerical results confirm the reliability and efficiency of the error estimates derived.
Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation
2016
Abstract In this paper, we introduce new concepts of α-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from α-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.
Explicit solutions for second-order operator differential equations with two boundary-value conditions. II
1992
AbstractBoundary-value problems for second-order operator differential equations with two boundary-value conditions are studied for the case where the companion operator is similar to a block-diagonal operator. This case is strictly more general than the one treated in an earlier paper, and it provides explicit closed-form solutions of boundary-value problem in terms of data without increasing the dimension of the problem.